Géométrie et Théorie
des Modèles
Année 2017 - 2018
Organisateurs :
Zoé
Chatzidakis, Raf Cluckers.
Pour recevoir le programme par e-mail, écrivez à :
zchatzid_at_dma.ens.fr. Pour les personnes ne
connaissant pas du tout de théorie des modèles, des notes introduisant les
notions de base (formules, ensembles définissables,
théorème de compacité, etc.) sont disponibles
ici. Elles peuvent aussi
consulter les premiers chapitres du livre Model Theory and Algebraic Geometry, E. Bouscaren ed.,
Springer Verlag, Lecture Notes in Mathematics 1696, Berlin 1998.
Les notes de quelques-uns des exposés sont disponibles.
Vendredi 13 octobre, ENS, salle W. Orateurs :
11h : Itaï Ben Yaacov (Lyon
1), Corps globalement
valués Dans un travail en commun avec E Hrushovski, nous étudions les corps globalement valués, qui sont une abstraction des corps de nombres, de fonctions, ou autres dans lesquels la formule du produit est vérifiée. Les questions habituelles de la théorie des modèles, telle que l'existence d'une modèle-compagne ou encore sa stabilité, nous mènent vers de nouvelles questions de nature plutôt géométrique.
Je vais expliquer quelques avancées récentes dans ce sens, où une analyse géométrique locale nous permet de déduire des propriété globales dans un corps globalement valués.
14h15 : Boris
Zilber (Oxford), Approximation, domination and integration
The talk will focus on results of two related strands of research undertaken by the speaker. The first is a model of quantum mechanics based on the idea of 'structural approximation'. The earlier paper 'The semantics of the canonical commutation relations' (arxiv) established a method of calculation, essentially integration, for quantum mechanics with quadratic Hamiltonians. Currently, we worked out a (model-theoretic) formalism for the method, which allows us to
perform more subtle calculations, in particular, we prove that our path
integral calculation produce correct formula for quadratic
Hamiltonians avoiding non-conventional limits used by physicists. Then
we focus on the model-theoretic analysis of the notion of structural
approximation and show that it can be seen as a positive model theory
version of the theory of measurable structures, compact domination and
integration (p-adic and adelic).
Notes de l'exposé
16h : Immi Halupczok (Düsseldorf), Un nouvel analogue de l'o-minimalité dans des corps valués Pour les corps réel clos, la notion d'o-minimalité a eu un énorme succès; il s'agit d'une condition très simple à une
expansion du langage des corps, qui implique que les ensembles définissables se comportent très bien d'un point de vue géométrique. Il existe plusieurs adaptations de cette notion aux corps valués (p.ex. p-mininalité, C-minimalité, B-minimalité, v-minimalité), mais la plupart de ces adaptations (a) s'appliquent seulement à une classe de corps valués assez restrictive, (b) elles n'impliquent pas tout ce qu'on voudrait, et/ou (c) elles sont définies de manière nettement plus compliquée. Dans cet exposé, je vais présenter une nouvelle notion qui n'a pas les problèmes (a) et (b) et qui a une définition raisonnablement simple.
Vendredi 17 novembre, ENS, salle W. Orateurs
:
11h : Olivier Benoist (Strasbourg), Sur les polynômes positifs qui sont sommes de peu de carrés Artin a résolu le 17ème problème de Hilbert : un polynôme réel positif en n variables est somme de carrés de fractions rationnelles. Pfister a amélioré ce résultat en démontrant qu'il est somme de 2^n carrés. Décider si la borne 2^n de Pfister est optimale est un problème ouvert si n>2. Nous expliquerons que cette borne peut être améliorée en petit degré et, en deux variables, pour un ensemble dense de polynômes positifs.
14h15 : Dmitry Sustretov
(MPIM), Incidence systems on Cartesian powers
of algebraic curves The classical theory of abstract projective geometries establishes an
equivalence between axiomatically defined incidence systems of points
and lines and projective planes defined over a field. Zilber's
Restricted Trichotomy conjecture in dimension one is a generalization
of this statement in a sense, with lines replaced by algebraic curves;
it implies that a non-locally modular strongly minimal structure with
the universe an algebraic curve over an algebraically closed field and
basic relations constructible subsets of Cartesian powers of the curve
interprets an infinite field. The talk will present the basic
structure of the proof of the conjecture, and outline its application,
by Zilber, to Torreli-type theorem for curves over finite fields of
Bogomolov, Korotiaev and Tschinkel. Joint work with Assaf Hasson.
16h : Alex Wilkie (Oxford), Quasi-minimal expansions of the complex field
I discuss a back-and-forth technique for proving that in certain expansions of the complex field every L_{∞, ω}-definable subset
of ℂ is either countable or co-countable. Some successes of the method will also be discussed.
Vendredi 15
décembre, ENS, salle W. Orateurs
:
11h : Adam
Topaz (Oxford), On the conjecture of
Ihara/Oda-Matsumoto
Following the spirit of Grothendieck's Esquisse d'un Programme,
the Ihara/Oda-Matsumoto conjecture predicted a combinatorial
description of the absolute Galois group of Q based on its action on
geometric fundamental groups of varieties. This conjecture was resolved
in the 90's by Pop using anabelian techniques. In this talk, I will
discuss the proof of stronger variant of this conjecture, using mod-ell
two-step nilpotent quotients, while highlighting some connections with
model theory.
14h15 : Julien Sebag
(Rennes), Géométrie des arcs et
singularités Soulignée par Nash dans
les années 60, l'interaction entre la géométrie
des espaces d'arcs et la théorie des singularités s'est
fortement amplifiée sous l'influence de la théorie de
l'intégration motivique notamment. Dans cet exposé, nous
introduirons le schéma des arcs associé à une
variété algébrique et donnerons quelques
illustrations de cette interaction. Parmi elles, nous parlerons de
l'interprétation (possible) du point de vue des
singularités d'un théorème de Drinfeld et
Grinberg-Kazhdan démontré au début des
années 2000. (Cette dernière partie de l'exposé
s'appuie sur une collaboration avec David Bourqui.)
16h : Martin Bays (Münster), The geometry of combinatorially extreme algebraic configurations
Given a system of polynomial equations in m complex variables with solution set of dimension d, if we take finite subsets X_i of C each of size at most N, then the number of solutions to the system whose ith co-ordinate is in X_i is easily seen to be bounded as O(N^d).
We ask: when can we improve on the exponent d in this bound?
Hrushovski developed a formalism in which such questions become amenable to the tools of model theory, and in particular observed that incidence bounds of Szemeredi-Trotter type imply modularity of associated geometries. Exploiting this, we answer a (more general form of) our question above. This is part of a joint project with Emmanuel Breuillard.
Vendredi 19 janvier 2018, à l'IHP, amphithéâtre
Hermite. (Attention au changement de lieu). Orateurs
:
11h : Isaac Goldbring (UC
Irvine), Spectral gap and
definability
Originating in the theory of unitary group representations, the notion
of spectral gap has played a huge role in many of the deep results in
the theory of von Neumann algebras in the last couple of decades.
Recently, with my collaborators, we are slowly understanding the
model-theoretic significance of spectral gap, in particular its
connection with definability. In this talk, I will discuss a few of
our recent observations in this direction and speculate on some
further possible developments. I will assume no knowledge of von
Neumann algebras nor continuous logic. Various parts of this work are
joint with Bradd Hart, Thomas Sinclair, and Henry Towsner.
14h15 : Jan
Tuitman (Leuven), Effective Chabauty and
the Cursed Curve
The Chabauty method often allows one to find the rational points on
curves of genus at least 2 over the rationals, but has a lot of
limitations. On a theoretical level, the Mordell-Weil rank of
the Jacobian of the curve has to be strictly smaller than its
genus. In practice, even when this condition is satisfied, the
relevant Coleman integrals can usually only be computed for
hyperelliptic curves. We will report on recent work of ours
(with different combinations of collaborators) on extending the
method to more general curves. In particular, we will show how
one can use an extension of the Chabauty method by Kim to find
the rational points on the split Cartan modular curve of level
13, which is also known as the cursed curve. The talk will be
aimed at non-specialists with an interest in number theory.
Notes de l'exposé.
16h : Jonathan
Kirby (East
Anglia), Blurred Complex
Exponentiation
Zilber conjectured that the complex field equipped with the exponential function is quasiminimal: every definable subset of the complex numbers is countable or co-countable. If true, it would mean that the geometry of solution sets of complex exponential-polynomial equations and their projections is somewhat like algebraic geometry. If false, it is likely that the real field is definable and there may be no reasonable geometric theory of these definable sets.
I will report on some progress towards the conjecture, including a proof when the exponential function is replaced by the approximate version given by ∃ q,r in Q [y = e^{x+q+2πi r}]. This set is the graph of the exponential function blurred by the group exp(Q + 2 πi Q). We can also blur by a larger subgroup and prove a stronger version of the theorem. Not only do we get quasiminimality but the resulting structure is isomorphic to the analogous blurring of Zilber's exponential field and to a reduct of a differentially closed field.
Reference: Jonathan Kirby, Blurred Complex Exponentiation, arXiv:1705.04574
Vendredi 23 mars 2018, amphithéatre
Darboux, IHP. Orateurs prévus :
11h : Florian Pop (U. of
Pennsylvania), On a conjecture of Colliot-Thélène Let f be a morphism of projective smooth varieties X, Y defined over the rationals. The conjecture by Colliot-Thélène under discussion gives (conjectural) sufficient conditions which imply that for almost all rational prime numbers p, the map f maps the p-adic points X(ℚ_p) surjectively onto Y(ℚ_p). The aim of the talk is to present some recent results by Denef, Skorobogatov et al; further to report on work in progress on a different method to attack the conjecture under quite relaxed hypotheses.
14h15 : Thomas Scanlon (UC
Berkeley), The dynamical Mordell-Lang problem
in positive characteristic
The dynamical Mordell-Lang conjecture in characteristic zero predicts
that if f : X → X is a map of algebraic varieties over a field K of
characteristic zero, Y ⊆ X is a closed subvariety and a in X(K)
is a K-rational point on X, then the return set { n in N : f^n(a) in
Y(K) } is a finite union of points and arithmetic progressions. For K
a field of characteristic p > 0, it is necessary to allow for finite
unions with sets of the form { a + ∑_{i=1}^m p^{n_i} : (n_1,
... , n_m) in N^m } and one might conjecture that all return sets are
finite unions of points, arithmetic progressions and such p-sets. We
studied the special case of the positive characteristic dynamical
Mordell-Lang problem on semiabelian varieites and using our earlier
results with Moosa on so-called F-sets reduced the problem to that of
solving a class of exponential diophantine equations in characteristic
zero. In so doing, under the hypothesis that X is a semiabelian
variety and either Y has small dimension or f is sufficiently general,
we prove the conjecture. However, we also show that our reduction to
the exponential diiophantine problems may be reversed so that the
positive characteristic dynamical Mordell-Lang conjecture in general
is equivalent to a class of hard exponential diophantine problems
which the experts consider to be out of reach given our present
techniques.
(This is a report on joint work with Pietro Corvaja, Dragos Ghioca and
Umberto Zannier available at arXiv:1802.05309.)
Notes de l'exposé
16h : Sergei Starchenko
(U. Notre Dame), A model theoretic generalization of the one-dimensional case of the Elekes-Szabo theorem
(Joint work with A. Chernikov)
Let V ⊆ ℂ^3 be a complex variety of dimension 2.
The Elekes-Szabo Theorem says that if V contains too many
points on n × n × n Cartesian products then V has a special form:
either V contains a cylinder over a curve or V is related to the graph
of the multiplication of an algebraic group.
In this talk we generalize the Elekes-Szabo Theorem to relations on
strongly minimal sets interpretable in distal structures.
Vendredi 18 mai 2018, à Jussieu,
salle 101, couloir 15-16. (Jussieu = 4 place Jussieu,
75005 Paris. Métro Jussieu). Programme :
11h : Laurent Bartholdi
(ENS), Groups and
algebras
To every group G is associated an associative algebra, namely its group
ring kG. Which (geometric) properties are reflected in (algebraic)
properties of kG? I will survey some results and conjectures in this
area, concentrating on specific examples: growth, amenability,
torsion, and filtrations.
14h15 : Rahim Moosa
(Waterloo), Isotrivial Mordell-Lang and
finite automata
About fifteen years ago, Thomas Scanlon and I gave a description of sets
that arise as the intersection of a subvariety with a finitely
generated subgroup inside a semiabelian variety over a finite
field. Inspired by later work of Derksen on the positive
characteristic Skolem-Mahler-Lech theorem, which turns out to be a
special case, Jason Bell and I have recently recast those results in
terms of finite automata. I will report on this work, as well as on
the work-in-progress it has engendered on an effective version of
the isotrivial Mordell-Lang theorem.
16h : Omer
Friedland (IMJ-PRG), Doubling
parametrizations and Remez-type inequalities
A doubling chart on an n-dimensional complex manifold Y is a univalent
analytic mapping ψ : B_1 → Y of the unit ball in ℂ^n, which is
extendible to the (say) four times larger concentric ball of
B_1. A doubling covering of a compact set G in Y is its covering
with images of doubling charts on Y. A doubling chain is a series
of doubling charts with non-empty subsequent
intersections. Doubling coverings (and doubling chains) provide,
essentially, a conformally invariant version of Whitney's ball
coverings of a domain W ⊂ ℝ^n.
Our main motivation is that doubling coverings form a special class of smooth parameterizations, which are used in bounding entropy type invariants in smooth dynamics on one side, and in bounding density of rational points in diophantine geometry on the other. Complexity of smooth parameterizations is a key issue in some important open problems in both areas.
In this talk we present various estimates on the complexity of these objects. As a consequence, we obtain an upper bound on the Kobayashi distance in Y, and an upper bound for the constant in a doubling inequality for regular algebraic functions on Y. We also provide the corresponding lower bounds for the length of the doubling chains, through the doubling constant of specific functions on Y.
This is a joint work with Yosef Yomdin.
Slides.
Programme des séances
passées : 2006-07,
2007-08,
2008-09,
2009-10,
2010-11,
2011-12,
2012-13,
2013-14,
2014-15,
2015-16,
2016-17.
Retour
à la page principale.
|