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Hypergraphs and Zarankiewicz’s problem

◮ We fix r ∈ N≥2 and let H = (V1, . . . ,Vr ;E ) be an r -partite
and r -uniform hypergraph (or just r -hypergraph) with vertex
sets V1, . . . ,Vr with |Vi | = ni , (hyper-) edge set
E ⊆

!
i∈[r ] Vi , and n =

"r
i=1 ni is the total number of

vertices.
◮ When r = 2, we say “bipartite graph” instead of

“2-hypergraph”.
◮ For k ∈ N, let Kk,...,k denote the complete r -hypergraph with

each part of size k (i.e. Vi = [k] and E =
!

i∈[k] Vi ).
◮ H is Kk,...,k -free if it does note contain an isomorphic copy of

Kk,...,k .
◮ Zarankiewicz’s problem: for fixed r , k , what is the maximal

number of edges |E | in a Kk,...,k -free r -hypergraph H? (As a
functions of n1, . . . , nr ).



Number of edges in a Kk ,...,k-free hypergraph

◮ The following fact is due to [Kővári, Sós, Turán’54] for r = 2
and [Erdős’64] for general r .

Fact (The Basic Bound)
If H is a Kk,...,k -free r -hypergraph then |E | = Or ,k

#
nr−

1
kr−1

$
.

◮ “= Or ,k(−)” means “≤ c ·−” for some constant c ∈ R
depending only on r and k .

◮ So the exponent is slightly better than the maximal possible r
(we have nr edges in Kn,...,n). A probabilistic construction in
[Erdős’64] shows that it cannot be substantially improved (but
whether it is sharp up to a constant is open).



Families of hypergraphs induced by definable relations

◮ Let M = (M, . . .) be a first-order structure in a language L,
and let R ⊆ Mx1 × . . .×Mxr be a definable relation on the
product of some sorts of M.

◮ We let FR be the family of all finite r -hypergraphs induced by
R , i.e. hypergraphs of the form

H = (V1, . . . ,Vr ;R ↾V1×...×Vr )

for some finite Vi ⊆ Mxi , i ∈ [r ].
◮ Question. What properties of the structure M are reflected

by the exponents in Zarankiewicz-style bounds for the families
of hypergraphs FR with R definable in M?

◮ Turns out many: NIP, distality, in certain “geometric” contexts
— the trichotomy principle.



NIP graphs

Fact (Fox, Pach, Sheffer, Suk, Zahl ’15)
Let M be an NIP structure and R ⊆ Mx1 ×Mx2 a definable
relation. Then there exists d = d(R) (can take d = VC (R)), such
that for every k we have: every Kk,k -free bipartite graph H ∈ FR

satisfies |E | = Od ,k

#
n2− 1

d

$
.

◮ Conversely, independence of the bounding exponent from k
implies that R is NIP:

1. if R is not NIP, it contains every bipartite graph as an induced
subgraph, and

2. [Bohman, Keevash’10] ∀k ≥ 5, there exists a bipartite
Kk,k -free graph with ≥ cn2− 2

k+1 edges.



Point-line incidences, char p

◮ Let K |= ACFp be an algebraically closed field of positive
characteristic.

◮ Let R ⊆ K 2 × K 2 be the (definable) incidence relation
between points and lines in K 2, i.e.

R(x1, x2; y1, y2) ⇐⇒ x2 = y1x1 + y2.

◮ Note that R is K2,2-free (there is a unique line through any
two distinct points).

◮ Let q be a power of p, then Fq ⊆ K and we take
V1 = V2 = (Fq)

2 (i.e. the set of all points and the set of all
lines in F2

q), E = R ↾V1×V2 . Then H = (V1,V2;E ) ∈ FR .
◮ We have |V1| = |V2| = q2 and |E | = q |V2| = q3.

◮ Let n := q2, then |V1| = |V2| = n and |E | ≥ n
3
2 — matches

the Basic Bound for r = k = 2.



Points-lines incidences, char 0
◮ On the other hand, over the reals a bound strictly better than

the Basic Bound holds (4
3 < 3

2):

Fact (Szémeredi-Trotter ’83)
Let R ⊆ R2 ×R2 be the incidence relation between points and lines
in R2. Then every H ∈ FR satisfies |E | = O

#
n

4
3

$
.

◮ Known to be optimal up to a constant.
◮ In fact, the same holds in ACF0:

Fact (Tóth ’03)
Let R ⊆ C2 ×C2 be the incidence relation between points and lines
in C2. Then every H ∈ FR satisfies |E | = O

#
n

4
3

$
.

◮ Szémeredi-Trotter theorem has numerous generalizations for
semialgebraic graphs [Pach, Sharir’98], [Elekes, Szabó’12],
[Fox, Pach, Sheffer, Suk, Zahl’15].

◮ Reason: ACF0 is a reduct of a distal theory, while ACFp is not.



Distality

Definition
A structure M is distal if and only if for every definable family
{ϕ (x , b) : b ∈ My} of subsets of Mx there is a definable family%
θ (x , c) : c ∈ Mk

y

&
such that for every a ∈ Mx and every finite set

B ⊂ My there is some c ∈ Bk such that:
◮ a |= θ (x , c);
◮ θ(x , c) ⊢ tpϕ(a/B), that is for every a′ |= θ (x , c) and b ∈ B

we have a′ |= φ (x , b) ⇔ a |= φ (x , b).



Examples of distal structures

◮ M distal =⇒ M is NIP, unstable.
◮ Examples of distal structures: (weakly) o-minimal structures,

various valued fields of char 0 (e.g. Qp, RCVF, the valued
differential field of transseries).

◮ Stable structures with distal expansions: ACF0, DCF0,m, CCM,
abelian groups.

◮ Stable structures without distal expansions: ACFp [C.,
Starchenko’15], a disjoint union of finite expander graphs
(e.g. Ramanujan graphs) of growing degree and expansion
[Jiang, Nesetril, Ossona de Mendez, Siebertz’20].

◮ Problem. Do non-abelian free groups have distal expansions?



Stronger bounds for hypergraphs definable in distal
structures

◮ Generalizing [Fox, Pach, Sheffer, Suk, Zahl’15] in the
semialgebraic case, we have:

Fact (C., Galvin, Starchenko’16)
Let M be a distal structure and R ⊆ Mx1 ×Mx2 a definable
relation. Then there exists some ε = ε(R , k) > 0 such that every
Kk,k -free bipartite graph H ∈ FR satisfies |E | = OR,k(n

t−ε), where
t is the exponent given by the Basic Bound of Erdős for arbitrary
graphs.

◮ In fact, ε is given in terms of k and the size of the smallest
distal cell decomposition for R .

◮ E.g. if R ⊆ M2 ×M2 for an o-minimal M, then t − ε = 4
3

([C., Galvin, Starchenko’16]; independently, [Basu, Raz’16]).
◮ Bounds for R ⊆ Md1 ×Md2 with M |= RCF [Fox, Pach,

Sheffer, Suk, Zahl’15]; hypergraphs [Do’18]; M is o-minimal
[Anderson’21].



Connections to the “trichotomy principle” in model theory

◮ If M is sufficiently tame model-theoretically
(e.g. stable/geometric + distal expansion; or more concretely,
ACF0 or o-minimal), the exponents in Zarankiewicz bounds of
definable (hyper-)graphs appear to reflect the trichotomy
principle, and detect presence of algebraic structures (groups,
fields).

◮ Instances of this principle are also known in combinatorics —
extremal configuration for various counting problems tend to
come from algebraic structures.

◮ We discuss two results demonstrating that they have to come
from algebraic structures in certain cases, focusing here on the
o-minimal case.



Elekes-Szabó theorem, 1

◮ [Erdős, Szemerédi’83] There exists some c ∈ R>0 such that:
for every finite A ⊆ R,

max {|A+ A| , |A · A|} = Ω
#
|A|1+c

$
.

◮ [Solymosi], [Konyagin, Shkredov] Holds with 4
3 + ε for some

sufficiently small ε > 0. (Conjecturally: with 2 − ε for any ε).
◮ [Elekes, Rónyai’00] Let f ∈ R [x , y ] be a polynomial of degree

d , then for all A,B ⊆n R,

|f (A× B)| = Ωd

#
n

4
3

$
,

unless f is either of the form g(h(x) + i(y)) or g(h(x) · i(y))
for some univariate polynomials g , h, i .



Elekes-Szabó theorem, 2

◮ [Elekes-Szabó’12] provide a conceptual generalization: for any
algebraic surface R(x1, x2, x3) ⊆ R3 so that the projection
onto any two coordinates is finite-to-one, exactly one of the
following holds:

1. there exists γ > 0 s.t. for any finite Ai ⊆n R we have

|R ∩ (A1 × A2 × A3)| = O(n2−γ).

2. There exist open sets Ui ⊆ R and V ⊆ R containing 0, and
analytic bijections with analytic inverses πi : Ui → V such that

π1(x1) + π2(x2) + π3(x3) = 0 ⇔ R(x1, x2, x3)

for all xi ∈ Ui .



Generalizations of the Elekes-Szabó theorem
Let R ⊆ X1 × . . .× Xr be an algebraic surface (or just a definable
set) with finite-to-one projection onto any r − 1 coordinates and
dim(Xi ) = m.

1. [Elekes, Szabó’12] r = 3, m arbitrary over C (only count on
grids in general position, correspondence with a complex
algebraic group of dimension m);

2. [Raz, Sharir, de Zeeuw’18] r = 4, m = 1 over C;
3. [Raz, Shem-Tov’18] m = 1, R of the form f (x1, ..., xr−1) = xr

for any r over C.
4. [Bays, Breuillard’18] r and m arbitrary over C, recognized that

the arising groups are abelian (however no bounds on γ);
5. Related work: [Raz, Sharir, de Zeeuw’15], [Wang’15]; [Bukh,

Tsimmerman’ 12], [Tao’12]; [Hrushovski’13]; [Jing, Roy,
Tran’19].

6. [C., Peterzil, Starchenko] Any r and m, any o-minimal
structure (or stable with a distal expansion) and explicit
bounds on γ. A special case:



One-dimensional o-minimal case

Theorem (C., Peterzil, Starchenko)
Assume r ≥ 3, M is an o-minimal expansion of R and R ⊆ Rr is
definable, such that the projection of R to any r − 1 coordinates is
finite-to-one. Then exactly one of the following holds.

1. For any finite Ai ⊆n R, i ∈ [r ], we have

|R ∩ (A1 × . . .× Ar )| = OR

'
nr−1−γ

(
,

where γ = 1
3 if r ≥ 4, and γ = 1

6 if r = 3.
2. There exist open sets Ui ⊆ R, i ∈ [r ], an open set V ⊆ R

containing 0, and homeomorphisms πi : Ui → V such that

π1(x1) + · · ·+ πr (xr ) = 0 ⇔ R(x1, . . . , xr )

for all xi ∈ Ui , i ∈ [r ].



General o-minimal case

Theorem (C., Peterzil, Starchenko)
Let M be an o-minimal expansion of R. Assume r ≥ 3,
R ⊆ X1 × · · ·× Xr are definable with dim (Xi ) = m, and the
projection of R to any r − 1 coordinates is finite-to-one. Then
exactly one of the following holds.

1. For any finite Ai ⊆n Xi in general position, i ∈ [r ], we have

|R ∩ (A1 × . . .× Ar )| = OR

'
nr−1−γ

(
,

for γ = 1
8m−5 if s ≥ 4, and γ = 1

16m−10 if s = 3.
2. There exist definable relatively open sets Ui ⊆ Xi , i ∈ [s], an

abelian Lie group (G ,+) of dimension m and an open
neighborhood V ⊆ G of 0, and definable homeomorphisms
πi : Ui → V , i ∈ [s], such that for all xi ∈ Ui , i ∈ [s]

π1(x1) + · · ·+ πs(xs) = 0 ⇔ R(x1, . . . , xs).



Remarks

1. If M is o-minimal but is not elementarily equivalent to an
expansion of R — only get correspondence with a
type-definable group.

2. One ingredient — improved Zarankiewicz bounds in distal
structures discussed above (the power saving γ in the
non-group case corresponds to the improvement on the basic
Zarankiewicz bound).

3. Another – a higher arity generalization of the Abelian Group
Configuration theorem of Zilber and Hrushovski on recognizing
groups from a “generic chunk”. We discuss a simple purely
combinatorial case sufficient for o-minimal:



Recognizing groups, 1

1. Assume that (G ,+, 0) is an abelian group, and consider the
r -ary relation R ⊆

!
i∈[r ] G given by x1 + . . .+ xr = 0.

2. Then R is easily seen to satisfy the following two properties,
for any permutation of the variables of R :

∀x1, . . . , ∀xr−1∃!xrR(x1, . . . , xr ), (P1)

∀x1, x2∀y3, . . . yr∀y ′3, . . . , y ′r
#
R(x̄ , ȳ) ∧ R(x̄ , ȳ ′) → (P2)

'
∀x ′1, x ′2R(x̄ ′, ȳ) ↔ R(x̄ ′, ȳ ′)

($
.

We show a converse, assuming r ≥ 4:



Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)
Assume r ∈ N≥4, X1, . . . ,Xr and R ⊆

!
i∈[r ] Xi are sets, so that R

satisfies (P1) and (P2) for any permutation of the variables. Then
there exists an abelian group (G ,+, 0G ) and bijections πi : Xi → G
such that for every (a1, . . . , ar ) ∈

!
i∈[r ] Xi we have

R(a1, . . . , ar ) ⇐⇒ π1(a1) + . . .+ πr (ar ) = 0G .

◮ If X1 = . . . = Xr , property (P1) is equivalent to saying that
the relation R is an (r − 1)-dimensional permutation on the
set X1, or a Latin (r − 1)-hypercube, as studied by Linial and
Luria. Thus the condition (P2) characterizes, for r ≥ 3, those
Latin r -hypercubes that are given by the relation
“x1 + . . .+ xr−1 = xr ” in an abelian group.

◮ If R is definable and Xi are type-definable in a (saturated) M,
then G is type-definable and πi are relatively definable in M.



Recognizing groups in the stable case
◮ In the stable case of the theorem, we only get “generic

correspondence” with a type-definable group.
◮ An r -gon is a tuple a1, . . . , ar such that any r − 1 of its

elements are (forking-)independent, and any element in it is in
the algebraic closure of the other ones.

◮ An r -gon is abelian if, after any permutation of its elements,
we have a1a2 |⌣acl(a1a2)∩acl(a3...ar )

a3 . . . ar .
◮ If (G , ·) is a type-definable abelian group, g1, . . . , gr−1 are

independent generics in G and gr := g1 · . . . · gr−1, then
g1, . . . , gr is an abelian r -gon (associated to G ).

◮ Conversely,

Theorem (C., Peterzil, Starchenko; independently Hrushovski)
Let r ≥ 4 and a1, . . . , ar be an abelian r -gon. Then there is a
type-definable (in Meq) connected abelian group (G , ·) and an
abelian r -gon g1, . . . , gs associated to G , such that after a base
change each gi is interalgebraic with ai .



Recognizing fields

◮ For the semialgebraic K2,2-free point-line incidence relation
R = {(x1, x2; y1, y2) ∈ R4 : x2 = y1x1 + y2} ⊆ R2 × R2 we
have the (optimal) lower bound |R ∩ (V1 × V2)| = Ω(n

4
3 ).

◮ To define it we use both addition and multiplication, i.e. the
field structure.

◮ This is not a coincidence — any non-trivial lower bound on the
Zarankiewicz exponent of R allows to recover a field from it:

Theorem (Basit, C., Starchenko, Tao, Tran)
Assume that M = (M, <, . . .) is o-minimal and
R ⊆ Mx1 × . . .×Mxr is a definable relation which is Kk,...,k -free,
but |R ∩

!
i∈[r ] Vi | ∕= O(nr−1). Then a real closed field is definable

in the first-order structure (M, <,R).



Ingredients

◮ An almost optimal Zarankiewicz bound for hypergraphs
definable in locally modular o-minimal expansions of groups,
so e.g. for semilinear (= definable in (R, <,+)) hypergraphs.

◮ The trichotomy theorem for o-minimal structures [Peterzil,
Starchenko’98].



Geometric weakly locally modular theories

◮ Recall that a complete first-order theory T is geometric if, in
any model M |= T , the algebraic closure operator satisfies the
Exchange Principle and the quantifier ∃∞ is eliminated.

◮ Hence, in a model of a geometric theory, acl defines a
well-behaved notion of independence |⌣.

◮ [Berenstein, Vassiliev] A geometric theory is (weakly) locally
modular if for any small subsets A,B ⊆ M |= T there exists
some small set C |⌣∅ AB such that A |⌣acl(AC)∩acl(BC)

B .

◮ Intuition: the algebraic closure operator behaves like the linear
span in a vector space, as opposed to the algebraic closure in
an algebraically closed field.

◮ E.g. any o-minimal theory T is geometric, and T is weakly
locally modular if and only if T is linear (i.e. any normal
interpretable family of plane curves in T has dimension ≤ 1).



Zarankiewicz bound for semilinear relations

Theorem (Basit, C., Starchenko, Tao, Tran)
Let M be an o-minimal locally modular expansion of a group and
R a definable relation of arity r ≥ 2, and Kk,...,k -free. Then

|R ∩
)

i∈[r ]
Vi | = OR,k,ε(n

r−1+ε)

for any ε > 0.
More precisely, there are α = α(r , s, k) ∈ R and β = β(r , s) ∈ N,
where s is the description complexity of R , such that

|R ∩
)

i∈[r ]
Vi | ≤ αnr−1 (log n)β .

We can take β(r , s) := s(2r−1 − 1).



Corollary for semilinear hypergraphs

Corollary
For every s, k ∈ N there exist some α = α(r , s, k) ∈ R and
β(r , s) := s(2r−1 − 1) satisfying the following.
Suppose that r ≥ 2, d = d1 + . . .+ dr ∈ N and R ⊆ Rd1 × . . .×Rdr

is semilinear and defined by ≤ s linear equalities and inequalities.
Then for every Kk,...,k -free r -hypergraph H ∈ FR we have

|E | ≤ αnr−1 (log n)β .



An application to incidences with polytopes
◮ Applying with r = 2 we get the following:

Corollary
For every s, k ∈ N there exists some α = α(s, k) ∈ R satisfying the
following.
Let d ∈ N and H1, . . . ,Hq ⊆ Rd be finitely many (closed or open)
half-spaces in Rd . Let F be the (infinite) family of all polytopes in
Rd cut out by arbitrary translates of H1, . . . ,Hq.
For any set V1 of n1 points in Rd and any set V2 of n2 polytopes in
F , if the incidence graph on V1 × V2 is Kk,k -free, then it contains
at most αn (log n)q incidences.

◮ In particular (a similar result was obtained independently by
[Tomon, Zakharov]):

Corollary
For any set V1 of n1 points and any set V2 of n2 (solid) boxes with
axis parallel sides in Rd , if the incidence graph on V1 × V2 is
Kk,k -free, then it contains at most Od ,k

'
n(log n)2d

(
incidences.



Dyadic rectangles and a lower bound
◮ Is the logarithmic factor necessary?
◮ We focus on the simplest case of incidences with rectangles

with axis-parallel sides in R2. The previous corollary gives the
bound Od ,k

'
n(log n)4

(
.

◮ A box is dyadic if it is the direct products of intervals of the
form [s2t , (s + 1)2t) for some integers s, t.

◮ Using a different argument, restricting to dyadic boxes we get
a stronger upper bound O

#
n log n1
log log n1

$
, and give a construction

showing a matching lower bound (up to a constant).
◮ [Tomon, Zakharov] use our construction to disprove a

conjecture of Alon, Basavaraju, Chandran, Mathew, and
Rajendraprasad regarding the maximal possible number of
edges in a graph of bounded separation dimension.

Problem
What is the optimal bound on the power of log n? In particular,
does it have to grow with the dimension d?



Bound for Kk ,...,k-free relations in geometric weakly locally
modular structures

◮ In our bounds, we can get rid of the logarithmic factor entirely
restricting to the family of all finite r -hypergraphs induced by
a given Kk,...,k -free relation (as opposed to all Kk,...,k -free
r -hypergraphs induced by a given relation).

Theorem (Basit, C., Starchenko, Tao, Tran)
Assume that T is a geometric, weakly locally modular theory, and
M |= T . Assume that r ∈ N≥2 and R ⊆ Mx1 × . . .×Mxr is
definable and Kk,...,k -free. Then there exists some α = α(R) > 0
such that for every H ∈ FR we have

|E | ≤ αnr−1.

Moreover, if T is distal, then can relax “Kk,...,k -free” to “does not
contain the direct product of r infinite sets”.
A related observation was made by Evans in the binary case for
certain stable theories.



Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko’98)
Let M be an o-minimal saturated structure. TFAE:
◮ M is not weakly locally modular;
◮ there exists a real closed field definable in M.

◮ Combining this with the previous theorem, we thus get:

Corollary
Let M be an o-minimal structure. TFAE:
◮ M is weakly locally modular;
◮ For every definable Kk,...,k -free R , every H ∈ FR satisfies

|E | ≤ αnr−1.
◮ no infinite field is definable in M.



Thank you!

◮ Model-theoretic Elekes-Szabó for stable and o-minimal
hypergraphs, Artem Chernikov, Ya’acov Peterzil, Sergei
Starchenko (arXiv:2104.02235)

◮ Zarankiewicz’s problem for semilinear hypergraphs, Artem
Chernikov, Abdul Basit, Sergei Starchenko, Terence Tao and
Chieu-Minh Tran (arXiv:2009.02922)


